Zebrafish learn to forage in the dark.
نویسندگان
چکیده
A large diversity of fishes struggle early in life to forage on zooplankton while under the threat of predation. Some species, such as zebrafish (Danio rerio), acquire an ability to forage in the dark during growth as larvae, but it is unclear how this is achieved. We investigated the functional basis of this foraging by video-recording larval and juvenile zebrafish as they preyed on zooplankton (Artemia sp.) under infrared illumination. We found that foraging improved with age, to the extent that 1-month-old juveniles exhibited a capture rate that was an order of magnitude greater than that of hatchlings. At all ages, the ability to forage in the dark was diminished when we used a chemical treatment to compromise the cranial superficial neuromasts, which facilitate flow sensing. However, a morphological analysis showed no developmental changes in these receptors that could enhance sensitivity. We tested whether the improvement in foraging with age could instead be a consequence of learning by raising fish that were naïve to the flow of prey. After 1 month of growth, both groups foraged with a capture rate that was significantly less than that of fish that had the opportunity to learn and indistinguishable from that of fish with no ability to sense flow. This suggests that larval fish learn to use water flow to forage in the dark. This ability could enhance resource acquisition under reduced competition and predation. Furthermore, our findings offer an example of learning in a model system that offers promise for understanding its neurophysiological basis.
منابع مشابه
Identification of the first Transgenic Aquatic Animal in Iran by PCR-Based Method and Protein Analysis
In the recent years, there is evidence of training a red type of zebrafish which differs from wild-type in body color. There is not any document how it reaches to the ornamental fish farms of Iran but at first, it was a doubt it belongs to a morphotype or genetic modification (GM). First of all, a set primer was designed to validate zebrafish species. Mitochondrial 16srDNA was selected and ampl...
متن کاملHistopathological Changes of Zebrafish (Danio rerio) Ovaries Exposed to Sub-lethal Concentrations of Methyl Paraben
Paraben compounds are used widely as preservatives to inhibit microbial growth and extend used in pharmaceuticals, hygienic, cosmetics, care products. They pose the potential for reproductive toxicity for users. This paper provides an overview of the applications of histopathological biomarkers in reproductive toxicity in zebrafish caused by methylparaben. The present study investigated the cha...
متن کاملHistopathological evaluation of zebrafish (Danio rerio) larvae following embryonic exposure to MgO nanoparticles
The aim of this study was to investigate the histopathological changes in zebrafish larvae following embryonic exposure to nanoparticles of magnesium oxide (MgONPs). The toxicity of metal oxide nanoparticles is attracting increasing attention. Among these nanomaterials, MgONPs are particularly interesting as a low cost and environmentally-friendly material. Histological investigations are used ...
متن کاملEffects of Short-Term Exposure to Sublethal Concentrations of Silver Nanoparticles on Histopathology and Electron Microscope Ultrastructure of Zebrafish (Danio Rerio) Gills
Background: The increasing use of nanomaterials and nanoproducts has increased the possibility of contamination of the environment, which may have adverse effects on different organisms. The aim of this study was to evaluate the effects of silver nanoparticles on histopathology and gill ultrastructure of zebrafish (Danio rerio) under laboratory conditions. Methods: Zebrafish were exposed to ...
متن کاملEvaluation of of the performance of the zebrafish (Danio rerio) model in nanotoxicology studies with emphasis on embryo pathology
The present study was conducted to evaluate the performance of zebrafish (Danio rerio) as a model in embryo and fetal pathology in nanotoxicology studies. Examination of the sources showed that it is possible to completely inhibit hatching and fetal death when exposed to nanoparticles, because nanoparticles interact with hatching enzymes. Zebrafish embryo developmental abnormalities have been s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of experimental biology
دوره 219 Pt 4 شماره
صفحات -
تاریخ انتشار 2016